

Cambridge O Level

COMBINED SCIENCE 5129/11

Paper 1 Multiple Choice May/June 2024

1 hour

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet

Soft clean eraser

Soft pencil (type B or HB is recommended)

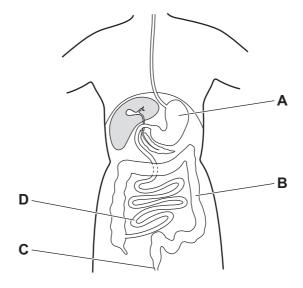
INSTRUCTIONS

There are forty questions on this paper. Answer all questions.

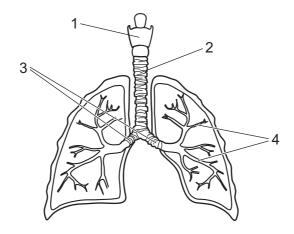
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do not use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.



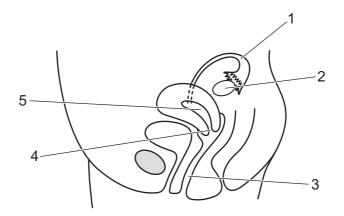
- 1 Which statement describes why carbon dioxide diffuses from the blood into the alveoli?
 - A The carbon dioxide concentration in the alveoli is greater than the oxygen concentration in the blood.
 - **B** The carbon dioxide concentration in the alveoli is greater than the concentration of carbon dioxide in the blood.
 - **C** The carbon dioxide concentration in the blood is greater than the concentration of carbon dioxide in the alveoli.
 - **D** The carbon dioxide concentration in the blood is greater than the oxygen concentration in the alveoli.
- 2 Which chemical test reagent would identify the substance from which enzymes are formed?
 - A Benedict's solution
 - **B** biuret reagent
 - **C** ethanol
 - **D** iodine solution
- 3 Which raw materials are necessary for photosynthesis?


	carbon dioxide	oxygen	water
Α	yes	yes	yes
В	yes	yes	no
С	yes	no	yes
D	no	yes	yes

4 The diagram shows some of the organs of the human digestive system.

Which labelled organ is the colon?

5 The diagram shows the human lungs.



Which row correctly identifies structures 1, 2, 3 and 4?

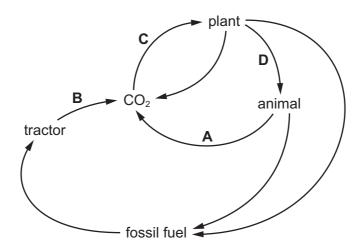
	1	2	3	4
Α	trachea	larynx	bronchi	bronchioles
В	larynx	bronchioles	bronchi	trachea
С	larynx	trachea	bronchi	bronchioles
D	bronchi	trachea	larynx	bronchioles

- 6 Which organ breaks down lactic acid?
 - **A** kidney
 - **B** liver
 - **C** pancreas
 - **D** stomach
- 7 Which statement describes a vein?
 - **A** It has thick walls, no valves and carries blood away from the heart.
 - **B** It has thick walls, valves and carries blood under high pressure.
 - **C** It has thin walls, no valves and carries blood under high pressure.
 - **D** It has thin walls, valves and carries blood back to the heart.
- 8 What is a substance which modifies or affects chemical reactions in the body?
 - **A** drug
 - **B** glycerol
 - **C** platelet
 - **D** urea

- **9** Where is the central nervous system (CNS) located?
 - A brain and heart
 - **B** brain and spinal cord
 - **C** feet and heart
 - D feet and spinal cord
- **10** The diagram shows a section through the human female reproductive system.

Which structures are the normal site of fertilisation and the site of gamete formation?

	normal site of fertilisation	site of gamete formation
Α	1	2
В	2	3
С	3	4
D	4	5


11 Bacteria are used in biotechnology.

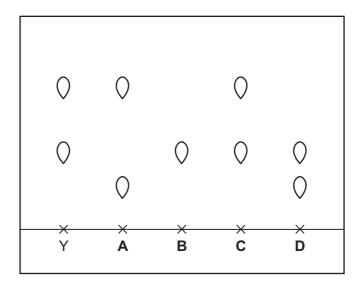
What are the reasons for this?

- 1 There are many different types of bacteria.
- 2 They are very large in size.
- 3 They can make complex molecules.
- 4 They reproduce rapidly.

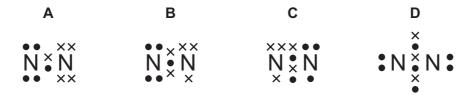
A 1 and 2 **B** 1 and 4 **C** 2 and 3 **D** 3 and 4

- **12** Why is the release of plastic waste into the environment a problem?
 - 1 All plastic waste is biodegradable.
 - 2 Plastic waste can be eaten by animals.
 - 3 Some plastic waste can release toxins.
 - A 1, 2 and 3
- **B** 1 and 2 only
- 1 and 3 only
- 2 and 3 only
- 13 Which process in the carbon cycle may indicate the activity of decomposers?

14 The element bromine has a melting point of –7 °C and a boiling point of 59 °C.


During which changes of state of bromine do the particles move closer together?

solid
$$\frac{W}{Y}$$
 liquid $\frac{X}{Z}$ gas


- A W and X
- B X and Y
- C Y and Z
- **D** W and Z

15 The chromatogram shows an unknown substance Y compared to four known substances.

What is Y?

- 16 Which statement about an atom is always correct?
 - **A** The number of protons is the same as the number of neutrons.
 - **B** The number of protons is the same as the number of electrons.
 - **C** The number of protons is more than the number of electrons.
 - **D** The number of protons is less than the number of neutrons.
- 17 Which dot-and-cross diagram represents the outer electrons in a nitrogen molecule?

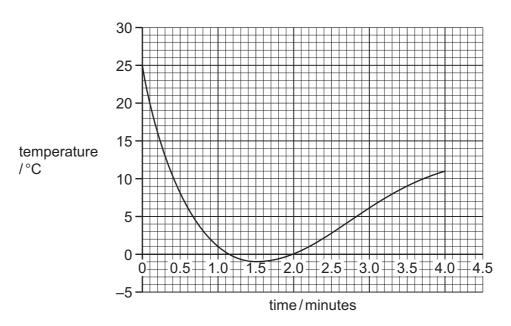
18 Dilute sulfuric acid reacts with aqueous sodium carbonate to make aqueous sodium sulfate, carbon dioxide and water.

Which row shows the state symbols for the reactants and the products?

	dilute sulfuric acid	aqueous sodium carbonate	aqueous sodium sulfate	carbon dioxide	water
Α	(aq)	(aq)	(aq)	(g)	(aq)
В	(aq)	(aq)	(aq)	(g)	(1)
С	(I)	(aq)	(aq)	(g)	(aq)
D	(I)	(aq)	(aq)	(g)	(I)

19 The equation for the decomposition of calcium carbonate is shown.

$$CaCO_3 \rightarrow CaO + CO_2$$


Which mass of calcium oxide is produced from 10.0 g of calcium carbonate?

- **A** 4.4 g
- **B** 5.0 g
- **C** 5.6 g
- **D** 10.0 g

20 Solid citric acid is added to aqueous sodium carbonate.

The mixture is stirred and the temperature of the mixture is measured for 4.0 minutes.

The results are shown.

Which statement about the reaction is correct?

- A The reaction is endothermic.
- **B** The reaction is exothermic.
- C The reaction started after 1.5 minutes.
- **D** The reaction transfers thermal energy to the surroundings.
- **21** A large piece of limestone (CaCO₃) is reacted with hydrochloric acid.

$$CaCO_3 + 2HCl \rightarrow CaCl_2 + H_2O + CO_2$$

Which change to the reaction conditions increases the rate of this reaction?

- A Decrease the concentration of the acid.
- **B** Decrease the temperature by 10 °C.
- **C** Double the volume of acid used.
- **D** Grind up the limestone into a fine powder.

22	Wh	en sulfur	dioxide dis	solves in wat	er, an a	cidic soluti	on is form	ied.		
	Wh	ich ions d	cause the s	olution to be	acidic?					
	A	hydroge	en ions							
	В	hydroxid	de ions							
	С	oxide io	ns							
	D	sulfate i	ons							
23	Ele	ments in	Group VII o	of the Periodi	c Table	are known	as the ha	logens.		
	The	e element	ts exist as o	covalent mole	cules.					
	Wh	ich word	describes t	hese molecu	es?					
	Α	alkaline								
	В	diatomic	0							
	С	organic								
	D	unreacti	ive							
24	Wh	ich stater	ments abou	it the uses of	alumini	um are cor	rect?			
		1	It is used i	n the manufa	cture of	aircraft be	cause it h	as a low de	ensity.	
		2	It is used i	n the manufa	cture of	aircraft be	cause it is	s a good co	onductor of e	electricity.
		3	It is used i	n the manufa	cture of	overhead	power cal	bles becau	se it has a lo	ow density.
		4	It is used t	o make food	contain	ers becaus	se it is a g	ood condu	ctor of electr	icity.
	Α	1 and 2	В	1 and 3	С	2 and 3	D	2 and 4		

25 Metal P does not react with water but it does react slowly with dilute hydrochloric acid.

Metal Q reacts rapidly with cold water.

Metal R does not react with dilute hydrochloric acid.

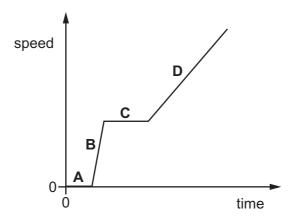
Metal S reacts slowly with cold water but it reacts rapidly with steam.

Which row lists the metals in order of decreasing reactivity?

	most reactive		-	least reactive
Α	Q	Р	S	R
В	Q	S	Р	R
С	R	Р	S	Q
D	R	S	Р	Q

26 Fraction M and fraction N are obtained by the fractional distillation of petroleum.

Fraction M is collected higher up the fractionating tower than fraction N.


Fraction M is used as a lubricant.

Which statement about fraction N is correct?

- **A** It has a lower boiling point than M.
- **B** It is used as a fuel for cars.
- C It is used as aircraft fuel.
- **D** It is used for making roads.
- 27 Which statement about alkene molecules is correct?
 - **A** They are able to add to each other to produce polymers.
 - **B** They are saturated.
 - **C** They contain carbon, hydrogen and oxygen atoms.
 - **D** They only have single bonds between the atoms.

28 The speed–time graph shows the motion of a body.

Which part of the graph shows the body at rest?

29 The table shows the gravitational field strengths on the surface of four different planets.

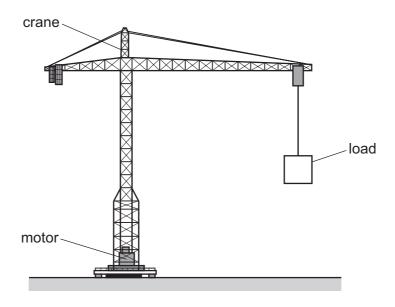
planet	gravitational field strength N/kg
Jupiter	24.8
Neptune	11.2
Saturn	10.4
Uranus	8.7

On which planet does an object of mass 25 kg have a weight of 280.0 N?

- **A** Jupiter
- **B** Neptune
- **C** Saturn
- **D** Uranus

30 The table shows the densities and the masses of four different blocks of metal.

Which block has the greatest volume?


	density g/cm³	mass /g
Α	3	7
В	8	16
С	19	57
D	21	54

31 A force is applied to an object on a frictionless surface. The force produces an acceleration of $3 \,\mathrm{m/s^2}$.

What are possible values for the applied force and for the mass of the object?

	force/N	mass/kg
Α	2	5
В	2	6
С	5	2
D	6	2

32 A crane has a motor that is used to lift a load. The motor uses diesel oil as fuel.

Which energy transfers occur as the load is lifted?

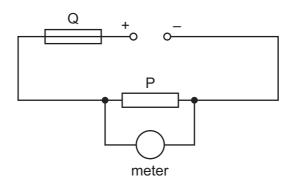
- A chemical to gravitational potential to kinetic
- **B** chemical to kinetic to gravitational potential
- C kinetic to chemical to gravitational potential
- **D** kinetic to gravitational potential to chemical

33 When boiling water is poured quickly into a cold glass jar, the glass jar may crack.

Why is this?

- **A** Glass is a good conductor of heat making the glass jar expand too quickly.
- **B** Glass is a good radiator of heat making the glass jar expand too quickly.
- **C** Glass is a poor conductor of heat making the inside of the glass jar expand faster than the outside.
- **D** Glass is a poor radiator of heat making the inside of the glass jar expand faster than the outside.
- 34 Which row gives an example of a transverse wave and gives the direction of particle vibration?

	example of a transverse wave	direction of particle vibration
Α	sound waves	at right angles to the direction of energy transfer
В	sound waves	parallel to the direction of energy transfer
С	water waves	at right angles to the direction of energy transfer
D	water waves	parallel to the direction of energy transfer


	ent is cor	atement is correct for electromagn	าetic rad	liation in	a vacuun
--	------------	------------------------------------	-----------	------------	----------

- **A** The radiation with the highest frequency travels at the greatest speed.
- **B** The radiation with the lowest frequency travels at the greatest speed.
- **C** The radiation with the highest frequency has the longest wavelength.
- **D** The radiation with the lowest frequency has the longest wavelength.
- **36** A charge of 20 C passes through a resistor in a time of 50 s.

What is the current in the resistor?

A 0.4 A **B** 0.4 V **C** 1000 A **D** 1000 V

37 The diagram shows part of an electrical circuit. The symbol for the meter is incomplete.

The meter measures potential difference.

What are the names of components P, Q and the meter?

	Р	Q	meter
Α	fuse	resistor	ammeter
В	fuse	resistor	voltmeter
С	resistor	fuse	ammeter
D	resistor	fuse	voltmeter

38 Four kettles have different power ratings.

The energy transferred to thermal energy in a given time for each kettle is shown in the table.

Which kettle has the highest power rating?

	energy transferred/J	time/s
Α	1000	2
В	3000	2
С	4000	5
D	6000	5

- 39 What does the nucleus of an atom of carbon contain?
 - A neutrons only
 - **B** protons only
 - C protons and electrons only
 - **D** protons and neutrons only

40 Which row correctly compares the mass and the type of charge of an alpha particle with the mass and the type of charge of a beta particle?

	mass of an alpha particle	type of charge of an alpha particle
Α	larger than a beta particle	opposite to a beta particle
В	smaller than a beta particle	opposite to a beta particle
С	larger than a beta particle	same as a beta particle
D	smaller than a beta particle	same as a beta particle

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

		≣>	² He	helium 4	10	Se	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	×e	xenon 131	98	R	radon	118	Og	oganesson -								
		=			6	Щ	fluorine 19	17	Cl	chlorine 35.5	35	ā	bromine 80	53	Н	iodine 127	85	Αŧ	astatine -	117	<u>R</u>	tennessine -								
		>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium —	116	_	livermorium –								
		>	_			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209	115	Mc	moscovium							
		≥							9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Εl	flerovium -				
		=									2	М	boron 11	13	Al	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204	113	Ę	nihonium –		
											30	Zu	zinc 65	48	ၓ	cadmium 112	80	Η̈́	mercury 201	112	ပ်	copernicium -								
											29	D O	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -								
	Group										28	ïZ	nickel 59	46	Pd	palladium 106	78	宀	platinum 195	110	Ds	darmstadtium -								
	Gro											27	ဝိ	cobalt 59	45	格	rhodium 103	22	Ϊ́	iridium 192	109	Ĭ	meitnerium -							
) - -			- エ	hydrogen 1							26	Ьe	iron 56	4	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium								
											25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –								
						pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium								
				Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	q	niobium 93	73	<u>n</u>	tantalum 181	105	ОР	dubnium –								
														ato	rela				22	j	titanium 48	40	Zr	zirconium 91	72	≒	hafnium 178	104	¥	rutherfordium -
															21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids					
		=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ba	barium 137	88	Ra	radium								
		_			က	:=	lithium 7	17	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	Cs	caesium 133	87	Ļ	francium -								

71 Lu	lutetium 175	103	Ļ	lawrencium	I
o X	ytterbium 173	102	%	nobelium	I
e9 Tm	thulium 169	101	Md	mendelevium	ı
88 L	erbium 167	100	Fm	ferminm	I
67 Ho	holmium 165	66	Es	einsteinium	I
e Dy	dysprosium 163	86	Ç	califomium	1
65 Tb	terbium 159	6	Ř	berkelium	I
64 Gd	gadolinium 157	96	Cm	curium	I
ез Еп	europium 152	92	Am	americium	ı
62 Sm	samarium 150	94	Pu	plutonium	I
61 Pm	promethium —	93	dΝ	neptunium	ı
9 PX	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
Ce Ce	cerium 140	06	Ч	thorium	232
57 La	lanthanum 139	88	Ac	actinium	I

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).